Spillover effect of on-farm

diversification

Catherine Pfeifer* **, Roel Jongeneel** *Land Dynamics ** Agricultural Economics & Rural Policy

Overview

- Introduction & objective
- Study area & data
- Modeling approach
- Results and conclusions

Overview

Introduction & objective

- Study area & data
- Modeling approach
- Results and conclusions

Introduction : transition in European rural

arday societal demand for rural area

- Multifunctional agriculture
- Farm diversification

- CAP beyond 2013
 - Fully decoupled payments
 - More focused on rural

development & land management

=> Better understanding of dynamics of rural service supply

Objective

Test if spill-over effect in farm diversification exist

Hypothesis : diversified farms cluster

- Cost of diversification reduces in a diversified neighborhood (external returns to scale)
- Easy knowledge transfer (reducing transaction cost)
- => Probability to diversify is higher in a diversified neighborhood

- Introduction & objective
- Study area & data
- Modeling approach
- Results and conclusions

Data available

- Geographical Information System for Agricultural Businesses (GIAB)
- Full coverage data set for 2005
 - Farm production and household characteristics
 - Diversification (binary variable)
 - Agri-enviromental schemes
 - Recreational activities
 - Short supply chains
 - Care farms
 - ...
 - Coordinates at the farmstead

- Introduction & objective
- Study area & data
- Modeling approach
- Results and conclusion

Theoretical result from a farm household utility maximization problem

$$\begin{aligned} q_{d} &= g_{d} \left(p_{f}, p_{d}, R_{d}, R_{o}, w_{o}, h, t, v, Z_{F}, Z_{H}, S \right) \\ & \frac{\partial q_{d}}{\partial p_{d}} > 0 \quad \frac{\partial q_{d}}{\partial R_{d}} < 0 \quad \frac{\partial q_{d}}{\partial h} > 0 \end{aligned}$$

f=food, d=diversification, o=others (non allocable) p=output price, R=input price, wo=off-farm wage, h=neighborhood, t=time, v=transfers, Zf=farm-, Zh=household-, S=location- characteristics

But data available = binary for diversification

Econometric model : a spatial probit

Binary variable

$$y_i \begin{cases} 1 \text{ if } y_i^* \ge 0 \\ 0 \text{ if } y_i^* < 0 \end{cases}$$

Latent model

$$y^{*} = \rho Wy^{*} + X\beta + \varepsilon$$

$$W = \begin{bmatrix} a & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ c & 0 & 0 & 1 \\ d & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$a = \begin{bmatrix} b & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

The reduced form

$$y^* = \left[I - \rho W\right]^{-1} X\beta + u$$

Bayesian Markov Chain Monte Carlo (MCMC)

methods on :

- believes (prior)
- joint distribution(s) of parameters to estimate
- random draws from the distributions=> statistics over the sample
- If interdependent joint distribution
 - "frog technique" (Gibbs-sampler)
- For spatial probit
 - Routine by LeSage (Matlab spatial toolbox)
 - "Double Gibbs-sampler"
 - Non-informative prior, normal distribution for β and uniform for ρ

Estimated models

Weighting matrix

- M0 no
- M1 5 nearest neighbors
- M2 15 nearest neighbors
- M3 2 km distance ban
- M4 5 km distance ban

- Introduction & objective
- Study area & data
- Modeling approach
- Results and conclusions

Results

Model	Without W (M0)	2 km ban (M3)	
average age	0.0149	0.0353	
age sq	-0.0002	-0.0004	
education	0.0341	0.0466	
social network	1.6947	2.0964	
size	0.0113	0.0131	
size squared	-0.00001	-0.00002	
organic	0.5104	0.6701	
ground water	0.0138	0.0393	
dist to road	-0.0618	-0.0878	
dist to city	0.0108	0.0082	
dist to attractive areas	-0.0392	-0.0210	
ρ		0.4740	
R-squared	0.1561	0.5539	

WAGENINGEN UNIVERSITY

WAGENINGENUR

Model comparison

	M 0	M1	M2	M3	M4
ρ		0.1508	0.3558	0.4740	0.5621
ρ/β_{size}	0	10.69	26.55	36.18	42.26
McFadden R- squared	0.1561	0.5410	0.5461	0.5539	0.5658
Quadratic probability score		0.1066	0.1061	0.1056	0.1056
Logarithmic probability score		0.3573	0.3554	0.3531	0.3528

Bayesian model comparison is not yet possible

Discussion and conclusion

Diversified farms cluster (hotspot)

- Near to attractive landscape, further away from cities
- Wet (low quality) soils
- Extend of spill-over effects is at least 5 km
- No analysis of "nature of the spill-over"
- Addressing the "cold spot" ?
 - Role of local demand

Bayesian specification

Prior : β = normal, ρ = uniform prior : independent

$$p(\beta \mid \rho, y^*) \propto N(c^*, T^*) \qquad c^* = (X'X + T^{-1})(XSy^* + T^{-1}c) \\ T^* = (X'X + T^{-1})^{-1}S = (I_n - \rho W) \\ p(\rho \mid \beta, y^*) \propto |I_n - \rho W| \exp\left(\frac{1}{2}[Sy^* - X\beta]'[Sy^* - X\beta]\right)$$

 $y^* \sim TMVN\{(I_n - \rho W)^{-1} X \beta, [(I_n - \rho W)'(I_n - \rho W)]^{-1}\}$

(LeSage and Pace, 2009)

Gibbs-sampler

- 1. select initial values for ρ, and y*, a number of replications and a number of burn-in replications
- 2. draw β from its conditional distribution given initial values (step 1)
- 3. draw ρ from given the initial value (step 1) and β computed in step 2
- 4. draw y* by :
 - Applying the Geweke procedure for identifying the truncated distribution of y*
 - Drawing y* from given β computed in step 1 and ρ computed in step
 - 3 from the distribution identified in step 4a.

Marginal effects for model M3

Marginal effects	direct	indirect	total
average age	0.03472	0.0002	0.0578
average age square	-0.0004	-0.00024	-0.0007
maximum education	0.05066	0.0028	0.0787
social network	2.1658 [0.6798]*	1.1884	3.3542
size	0.0136	0.0075	0.0211
size squared	-0.000016	-0.000009	-0.00002
organic	0.6571 [0.2431]*	0.361	1.1020
ground water level	-	-	0.0491
distance to road	-	-	-0.1457
distance to city	-	-	0.0161
distance to attractive landscapes	-	-	-0.04812

WAGENINGEN UNIVERSITY WAGENINGEN UR

$$pr[y|x_i = 0, \overline{X}, \overline{W}y] - pr[y|x_i = 1, \overline{X}, \overline{W}y]$$